ПАПIBIA UПIVERSITY

 of SCIEMCE AחD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE CODE: GNC502S	COURSE NAME: GENERAL CHEMISTRY 1B
SESSION: JANUARY 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS DR. MARIUS MUTORWA
MODERATOR:	DR. JULIEN LUSILAO

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. In the reaction between copper oxide (CuO) and carbon monoxide (CO), the reducing agent is:
A. CuO
B. CO
C. Cu
D. CO_{2}
2. In which of the following unbalanced reactions does chromium undergo oxidation?
A. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}$
B. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{2+}$
C. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
D. None of the above
3. The oxidation number of each chromium atom in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is:
A. +5
B. +6
C. +7
D. +12
4. For which of the following chemical changes does the heat of reaction (ΔH) correspond to a heat of formation ($\Delta \mathrm{H}_{\text {formation }}$)?
A. $\mathrm{N}(\mathrm{g})+3 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}$
D. $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
5. The pH of a $1.25 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ is:
A. 7.00
B. 2.90
C. 11.10
D. 10.90
6. Which of the following describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=14.00$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=14.00$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
7. In the reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Which of the following is true regarding the relative molar rates of disappearance of the reactants and the appearance of the products?
I. N_{2} appears at the same rate that H_{2} disappears.
II. $\mathrm{H}_{2} \mathrm{O}$ appears at the same rate that NO disappears.
III. NO disappears at the same rate that H_{2} disappears.
A. I only.
B. I and II only .
C. I and III only.
D. II and III only.
8. For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, experimental data were collected for three trials:

Experiment	$[A](M)$	$[B](M)$	Initial Rate Appearance of $C\left(M \mathrm{Mec}^{-1}\right)$
1	0.40	0.20	5.5×10^{-3}
2	0.80	0.20	5.5×10^{-3}
3	0.40	0.40	2.2×10^{-2}

What is the rate law of the reaction?
A. Rate $=k[A][B]$
B. Rate $=\mathrm{k}[\mathrm{A}]^{0}[\mathrm{~B}]^{2}$
C. Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{2}$
D. Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}$
9. For a reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, the energy of activation and enthalpy change of reaction were found to be $80 \mathrm{kJmol}^{-1}$ and $+20 \mathrm{kJmol}^{-1}$, respectively. What is the value of the activation energy for the reverse reaction?
A. $+60 \mathrm{kJmol}^{-1}$
B. $+100 \mathrm{kJmol}^{-1}$
C. $-80 \mathrm{kJmol}^{-1}$
D. $+20 \mathrm{kJmol}^{-1}$
10. Write the appropriate equilibrium constant expression K_{c} for the following reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. $\mathrm{K}_{\mathrm{c}}=\mathrm{k}[\mathrm{CO}]_{2}\left[\mathrm{O}_{2}\right]$
B. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right] /[\mathrm{CO}]\left[\mathrm{O}_{2}\right]$
C. $\mathrm{K}_{\mathrm{c}}=[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{CO}_{2}\right]$
D. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]^{2} /[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]$
11. The statement that the first ionization energy for an oxygen atom is lower than the first ionization energy for a nitrogen atom is:
A. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that oxygen has one doubly occupied $2 p$ orbital and nitrogen does not.
B. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is harder to take an electron from an oxygen atom than from a nitrogen atom.
C. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is easier to take an electron from an oxygen atom than from a nitrogen atom.
D. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that the oxygen atom has two doubly occupied $2 p$ orbitals and nitrogen has only one.
12. Which of the following ground-state electron configurations corresponds to an atom that has the most negative value of the electron affinity?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$
13. What species has the electron configuration $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$?
A. Mn^{2+}
B. Cr^{2+}
C. V^{3+}
D. Fe^{3+}
14. A nonpolar bond will form between two \qquad atoms of \qquad electronegativity.
A. different, opposite
B. identical, different
C. different, different
D. identical, equal
15. How many different types of resonance structures can be drawn for the ion $\mathrm{SO}_{3}{ }^{2-}$ where all atoms satisfy the octet rule?
A. 1
B. 2
C. 3
D. 4
16. Which two bonds are least similar in polarity?
A. $\mathrm{Al}-\mathrm{Cl}$ and $\mathrm{I}-\mathrm{Br}$
B. O-F and $\mathrm{Cl}-\mathrm{F}$
C. B-F and $\mathrm{Cl}-\mathrm{F}$
D. $\mathrm{I}-\mathrm{Br}$ and $\mathrm{Si}-\mathrm{Cl}$
17. The electron domain and molecular geometry of BrO_{2}^{-}is \qquad .
A. tetrahedral, trigonal planar
B. trigonal planar, trigonal planar
C. trigonal pyramidal, seesaw
D. tetrahedral, bent
18. The bond angles marked a, b, and c in the molecule below are about \qquad , and \qquad , respectively.

A. $90^{\circ}, 90^{\circ}, 90^{\circ}$
B. $120^{\circ}, 120^{\circ}, 109.5^{\circ}$
C. $109.5^{\circ}, 120^{\circ}, 109.5^{\circ}$
D. $109.5^{\circ}, 90^{\circ}, 120^{\circ}$
19. The molecular geometry consists of \qquad .
I. a nonbonding pair of electrons
II. a single bond
III. a multiple bond
A. I only
B. II only
C. I, II, and III
D. II and III
20. PCl_{5} has \qquad electron domains and a \qquad molecular arrangement.
A. 6, trigonal bipyramidal
B. 6, seesaw
C. 5, square pyramidal
D. 5, trigonal bipyramidal
21. The electron-domain geometry of the AsF5 molecule is trigonal bipyramidal. The hybrid orbitals used by the As atom for bonding are \qquad orbitals.
A. $\mathrm{sp}^{2} \mathrm{~d}^{2}$
B. sp^{3}
C. $\mathrm{sp}^{3} \mathrm{~d}^{2}$
D. $s p^{3} d$
22. How many isomers are possible for $\mathrm{C}_{5} \mathrm{H}_{12}$?
A. 1
B. 2
C. 3
D. 4
23. Which of the following compounds does not contain a $\mathrm{C}=\mathrm{O}$ bond?
A. Ketones
B. Aldehydes
C. Esters
D. Ethers
24. What radioactive element is used to diagnose medical conditions of the heart and arteries?
A. cobalt-60
B. thallium-201
C. radium-226
D. thorium- 234
25. What happens to the mass number and the atomic number of an element when it emits gamma radiation?
A. The mass number remains unchanged while the atomic number decreases by one.
B. The mass number and atomic numbers remain unchanged.
C. The mass number remains unchanged while the atomic number increases by one.
D. The mass number decreases by four and the atomic number decreases by two.

QUESTION 1

In the reaction:

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=+197 \mathrm{~kJ}
$$

What will happen to the number of moles (increase, decrease or remain the same) of SO_{3} in equilibrium with SO_{2} and O_{2} in each of the following cases
a. Oxygen gas is added.
b. The pressure is increased by decreasing the volume of the reaction container
c. The temperature is decreased.
d. Gaseous sulphur dioxide is removed.

QUESTION 2

2.1 Find the oxidation numbers of the indicated atom in each of the following:
a. S in $\mathrm{SO}_{4}{ }^{2-}$
b. N in $\mathrm{NO}_{2}{ }^{-}$
c. Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
2.2 Balance the following half reactions:
a. $\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})$ in basic medium
b. $\mathrm{HNO}_{2}(\mathrm{aq}) \rightarrow \mathrm{NH}^{+}(\mathrm{aq})$ in acidic medium

QUESTION 3

Calculate the pH of the following strong acid solutions:
a. $1.35 \times 10^{-3} \mathrm{M} \mathrm{HCl}$
b. $0.425 \mathrm{~g} \mathrm{HClO}_{4}$ in 2.00 L solutions
c. 5.00 mL of 1.00 M HCl diluted to 0.500 M .

QUESTION 4

4.1 Consider the molecule phosphorous pentachloride.
a. Draw the most dominant Lewis structure of the molecule.
b. State if the structure in (a) obeys the octet rule.
c. State the molecular geometry of the molecule.
d. State the hybridization on the central atom.
e. State the bonding angle between the central atom and peripheral atoms.
4.2 Arrange the bonds in each of the following sets in order of increasing polarity.
a. C-F; O-F and Be-F
b. $\mathrm{O}-\mathrm{Cl} ; \mathrm{S}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{P}$

QUESTION 5

5.1 Amoxicillin is a common antibiotic used to treat many different types of bacterial infections and the structure is shown below. Identify the functional groups in the molecule.

5.2 Draw the skeletal structures of the following hydrocarbons.
a. $\begin{gathered}\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \mathrm{CCH}_{2} \mathrm{CH} \\ \mathrm{CH}_{3} \mathrm{CH}_{3}\end{gathered}$
b.

c. 2,5,6-trimethylnonane
d. 3-propyl-4,5-dimethyldecane
e. 1-ethyl-3-methylcyclohexane

QUESTION 6

Gold-198 has a half-life of 2.69 days. What is the activity (in curies) of a 0.86 mg sample?

THE END
GOODLUCK

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
$=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$

1 atm $=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

1																	18
	2											13	14	15	16	17	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	\mathbf{P}	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	$\mathbf{M n}$	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R b}$	$\mathbf{S r}$	Y	Zr	Nb	M0	Tc	$\mathbf{R u}$	$\mathbf{R h}$	Pd	Ag	Cd	In	Sn	Sb	Te	I	$\mathbf{X e}$
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	$\mathbf{L u}$	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
8.90	140.12	140	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	16	166.934	173.04

89	90	91	92	93	94	95	96	97	98	99	100	101	102
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$
227.028	$\mathbf{N a} \mathbf{~ (2 3 2 . 0 3 8}$	$\mathbf{2 3 1 . 0 3 6}$	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Lanthanides:
Actinides:

